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Maintenance Cost Model

Arne Ran and Stig I. Rosenlund

Department of Mathematics
Chalmers University of Technology
Gothenburg, Sweden

The optimal age replacement policy according to the criterion of Fox {5] is obtained
for the model, introduced by Scheaffer {7], containing a continuously increasing main-
tenance cost factor. The new results beyond the generalisation to a new model are
mainly in sensitivity analysis. Examples are given where the optimal replacement age
increases with the interest rate, as well as examples of the opposite.
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SUMMARY OF NoraTion

The total discounted expense for keeping succes-
sive units of some machine operating indefinitely is
obtained when replacement takes place at failure or
at age 7', whichever occurs first.

C: = cost for replacing unit which has failed
C, = cost for replacing unit which has been
replaced at age T

¢ = maintenance cost intensity
p = interest rate (100p % per year)
é = In (1 + p), discount rate
F = unit life distribution function
r(x) = F'(z)/(1 — F(z)), failure rate function
e(@) = (C, — C)r(@) + g(z)
a@) = ¢* (1 — F(z))
4@ = [ aw) du
0
T
H(T) = fo ¢(@)alz) de + C, objective function

A(T) ' to be minimized
T
WD) = [ e ~ @) dz — €, ; except
for a positive factor this is H'(T)
T = solution to min H(T); H(T) > H() for
T > 0.

1. INTRODUCTION

We are concerned with the problem of age replace-
ment policies where replacement of a unit occurs at
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failure or at age T, whichever occurs first. In most
previous studies the optimum problem has been
defined as finding 7 which minimizes the average
expected cost per unit time over an infinite time
span. This implies the assumption that an expense C
has the same value regardless of when it is incurred.
In business practice it is more common to discount
an expense C suffered at time ¢ with a factor (1 + p)~*
to obtain its value at time 0. Here 100p % is the
internal interest rate or yield on capital, taking the
year as the unit of time.

In this paper we propose to obtain the optimal 7
which minimizes the expectation of the sum of
discounted expenses when the planning horizon is
infinite, thus following the method of Fox [5], [6]
and Denardo & Fox [3]. We make the following
assumptions.

The unit lives X, , X, , --- are IID random
variables distributed as X with an absolutely con-
tinuous distribution function F such that F(0) = 0
and F(z) < 1. We define

r(@) = F'(x)/(1 — F(@)),

the failure rate function. In most applications it is
reasonable to assume that this is increasing (IFR).
The interest rate p is constant, and we put

d=In(1+p) >0

A cost C; is incurred for each failed unit which
is replaced, and a cost C, < C, is incurred for each
non-failed unit which is exchanged. Further a con-
tinuously increasing cost is incurred for maintenance
of a unit, so that

j; ‘ g(u) du
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has been paid for a unit of age . This generalises
Fox’s model, which is obtained by putting g(z) = 0.

We may more generally think of the maintenance
cost suffered up to age ¢ as an increasing stochastic
process G(t) independent of unit age X and with
intensity function g, for example a Poisson process
with

BGO) = [ g du.

This will lead to the same expression for the mean
discounted cost.

The value of money should be taken as constant.
The assumption of constant p and § is not a serious
restriction, since economic studies have indicated
that real interest rates with the effect of inflation
eliminated are rather constant.

It is well known from the theory of investment
calculus that the present optimality criterion is the
only one consistent with long run profit maximizing
in societies with positive interest rates. Basically it
is a question of whether a resource available only
at some future time is worth as much as the same
resource available now. There are reasons to believe
that the need to reduce the value of future resources
is politically neutral and recognizedyin socialist as
well as capitalist countries.

As for the model, it is of course a simplification
of real life situations. Specifically, it does not allow
for an age-dependent secondhand value of the equip-
ment. This would be allowed for by letting the
replacement costs depend on equipment age ¢ at
replacement, putting C; = C.(t), 1 = 1, 2. It is
easy to obtain the expected sum E(Y) of discounted
expenses for this more general model; we only have
to replace C, with C,(z) and C, with C,(T) in the
expressions ¢(z), E(Y) and H(T) (see Eq. (#2)).
The general results and insights of the subsequent
analysis would, however, be obscured by complica-
tions like this. For this reason, and since there are
reasons to believe that our assumptions are adequate
approximations to reality in many situations, we
have chosen to employ the same (basically) model
as previous authors.

The introduction of a maintenance cost should
make the model more realistic in practical work.
See Scheaffer [7], Cléroux & Hanscom [2] and
Tilquin & Cléroux [8]. In [2] and [8] the authors
considered a discontinuous maintenance cost func-
tion instead of the integral above; such a model may
however be arbitrarily well approximated by ours,
since one may let g be very large on very small
intervals. The advantage of a cost intensity is of
course the greater mathematical tractability.

We will derive the expected discounted expense
for keeping successive units operating indefinitely as
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a function of the replacement age 7. The problem
is to minimize this function. In the limit as § — 0
this is the same as the traditional problem (Proposi-
tion 1). Sufficient conditions are given for the
existence of a finite global minimum 7' (Proposi-
tion 2, Eq. (6)). A useful delimitation of possible
values for T is also given (Proposition 3). In this
we generalise and strengthen the results of Fox [5)
and Denardo & Fox [3]. In sensitivity analysis no
previous work has been done. Here we study mainly
the dependence of 7 on §. A natural condition
implying that 7' increases in 6 is obtained (Proposi-
tion 4), and further we discuss conditions under
which 7 may decrease in 6. Examples illustrating
both these possibilities are finally given.

The dependence of 7' on § seems to be particularly
interesting from the viewpoint of econometrics and
forecasting. It is usually assumed that a decrease
in interest rates entails more capital expenditure.
‘While this is so under the conditions of Proposition 4,
our examples show that the opposite might be the
case for certain types of equipment.

2. VALUE oF DiscounTEp EXPENSE

Let us start with a new unit at time 0 = ¢, .
Units are replaced at times ¢, , ¢, , --- . With

Z.‘ =1; — tina )
the Z; = min (X;, T) are IID and distributed as
Z = min (X, T). We have
= 27, .
k=1
With
C(u)={0" if u<T
Coy if u2>T,
the cost for maintenance and replacement of the

1:th unit, located to the time of replacement ¢; , is

c@)+ [ g + 9 du.

The total cost Y for maintenance and replacement,
located to time 0, is then the sum of all these terms,
each discounted with the factor (1 + p)™** ;

3

(1) Y= [C(Z‘_) + ];Zi g F du]

i=1

- exp (—6 g Z,)-

‘Here Y is a random variable. All its terms are
positive, so by monotone convergence,
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E(Y)

3 E[( 1 e'””){C(Z,v)e'”‘

Z:
+ f glu)e ™ du}]

Z: E(e‘”)‘"{E(C(Z)e’”)

+ E( j; : glu)e™™ du)}

[E(C(Z)e'”)

zZ
+ E( f e du)] /(1 = E@*?%).
0
Thus E(Y) < « and Y is finite with probability

one. We see that E(Y) » = as § > 0and E(Y) >0
as 6 — . We have

E(C@)e") = _/: Cie F'(z) de
+ Co” U — F(T));
F(fﬂz gwe " du) = _/;T F'(2) ‘/: e ™ du de

+ @~ @) [ g™

T
= [ @~ Fapge™ dz
Jo
and
T
E@*%) = f e F (2) de + (1 — F(T))e*".
0
Define
e(x) = (C. — C)r@) + g(@).
After some manipulations we obtain
2 E(Y) = H(T) — C,,

where

[ e@ea - Fey as + ¢,
HT) = 2 )

T

[ (1 — F(z)) dz

We want to minimize H(7T) as function of T, and
this has a meaning also for § = 0, even though
Y = o for zero interest. In fact we have (cf. Fox
[5], Theorem 3)

Proposition 1.
lim $E (total discounted cost with discount rate 5)
-0
= lim t'E (non-discounted cost incurred up to

te

time t)

Proof. The method of Fox applies also to the
generalised model. Define the measure M on (0, =)
by M{I} = E (non-discounted cost incurred in I);
then of course

B(Y) = f: M {dz).

From (2) it is seen that the left side limit exists
and is positive, and so by a Tauberian theorem
(Feller [4], p. 445) the right side limit exists and is
equal to the left side. W

For the particular forms for g treated by Scheaffer
we can verify directly that H(T) for § = 0 is
Scheaffer’s objective function.

In the sequel we shall admit also the s-value 0,
the minimum problem then interpreted as the tradi-
tional time-average problem.

Note that for purposes of analysis the function H
is in a more convenient form than the objective
functions of Fox and Scheaffer, even though the
present model is more general. Fox’s objective func-
tion R is, for g(z) = 0, related to ours by R(T) =
STH(T) — C, .

3. MiNnmvizing H(T)

H is continuous and, at points where ¢ is con-
tinuous, differentiable. At points where o is dis-
continuous H has corners, some of which may be
local minima. Other possible local minima are points
where H'(T) = 0. To find these we differentiate H.
Put

a(r) = ¢ (1 — F(z))

= exp {—(51 + f: r(u) du)} ;
A(x) = j:a(u) du;

¥ = /;T [e(T) — o(x)]a(z) dz — C, .

We find
@)  H'(T) = aMAT)*WT)

= a(T)A(T)[p(T) — H(T)];
“) H(T) = o(T) — A(T)"'¥(T)

= o(T) — a(T)'A(DH(T).

Since we assume F(z) < 1 (otherwise we confine
the search for a minimum to (0, inf {z: F(z) = 1}])
we have

G)  H(T) =0 yT) = 0o HT) = oD

This result is partially contained in Fox [5], Theorem
1,
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The problem is now to establish conditions secur-
ing the existence of a finite global minimum 7'.
Proposition 2. Assume there is a T, < o such
that (1) > min {H#):0 < x < Ty} for T > T, .
Then T < 7, .

Proof. Put ¢ = min {H(z): 0 < 2 < T,}. Then
H(T,) > c implies

[ " (@) — oal) dz + C, > 0.

For T' > T, we have

HT) — ¢ = A(T)“[ fo " (ol@) — Dale) dx

+C, + f: (e(x) — c)a(z) dx] > 0.

Hence T' < T, , and there is no other global minimum

in (T, «). Moreover § > 0 or E(X) < « implies

A(®) < o sothatlimz. H(T) > cand T 5 . @
A quick corollary is

(6) o(T) - o implies T < =.

This strengthens Theorem 1 of Fox [5], who assumes
r continuous and strictly increasing to .

In [3] Denardo & Fox show that, for g(x) = 0,
T eannot belong to an interval of decreasing failure
rate. In the present setup this follows easily from
the form of y. Since ¢ increases (decreases) as ¢
increases (decreases), and since y/(T) exists if and
only if ¢’(T) exists, in which case ¢(T) = A(T)¢'(T)
we have
Proposition 8. T belongs to no open interval where
¢ is decreasing and not constant. Further ¢'(T) > 0
if existing.

Some cases that might typically be encountered

are
Case 1. ¢ increasing. Then y increases and may or
may not cross the 7-axis, the latter case correspond-
ing to T = . If & increases strictly there is only
one minimum, otherwise we might obtain 7' as any
point in a closed interval. Fox [5] states mistakenly
that there may be more than one local minimum
when g(r) = 0 and r increases strictly to «, and
gives an unnecessary (it would seem) algorithm for
finding the global minimum ([5], Theorem 2).
Case 2. ¢ U-shaped, caused by adjustments at the
beginning of the operation of a unit. Thus ¢ starts
at —C, and is U-shaped, so this is the same problem.
as Case 1, but with a translation of the origin to-
the minimum point for ¢ and y.

Note that if ¢ has jumps H has corners at these
points, which might be local minima (namely if y-
jumps from below the T-axis to above it) even
though H'(T) does not exist.

TECHNOMETRICS®, VOL. 18, NO. 4, NOVEMBER 1976

4. SENSITIVITY ANALYSIS

The parameters C, , C, , § and the functions F
and g determine 7. If we calculate the partial
derivatives of the relation ¢(T) = 0 with respect
to the parameters (subject to sufficient regularity
conditions) we get an idea of the sensitivity of the
model to changes in parameters. If we write the
maintenance cost intensity as

g(x) = Cago(x),

then we may regard C, , C;, C; and § as cost param-
eters determined by economic relations in the
outside world, while g, and F are inherent to the
technology of the equipment.

Assume now 7 and ¢ continuous and differentiable
at T. Then ' (T) > 0 (Proposition 3), but we
assume moreover that ¢'(T) > 0. Also assume that
the global minimum is unique. Then

™

o
ac,
ot
ac,

—( f ") - r@lato) dz)«o'(T)A(T))";

o7 R . N
(1+ | @) = r@le@ ) DA

gg “(f [9s(T) — go(@))alz) dr)wa")A(T))“;

([ stett) — ool d)i DAY

Representing the change in 7' as

. _ ol o o of
AT = AC, + aC, AC, + aC, AC; + Y, Ad

+ O((AC* + ACY + ACY + A8

we get a rough idea of the performance of our model
due to small changes in the cost parameters.

Now 7 may not even be a continuous function
of (C,, C,, Cy, d) (see examples). But if the de-
pendence of 7' on the parameters is determined by
(7), then it is monotone under general conditions;

[ 7
14 fo () — r(@)laz) dz = 1 — fo ¢ (2) da

AT or
+ r(MA(T) > 0, so Yl 0,

the condition IFR implies 97/0C; < 0, and g,

increasing implies aT/aC3 < 0. To see that
aT/as > 0, write
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® 0< f CHG) — H)AG) ds

./-: l:(/: ewa(u) du + Cz)/A(x)

— ¢(T)]A(x) dz

I

fof ( fn (e(w) — o(T))a(u) du + 02> s

- f ([ (1) = ¢(u)alu) du) dr
=lﬁ”W@)—¢@ﬂﬂﬂdm

Keeping F, g, C, and C, fixed and concentrating

on the dependence of T on 3, writing 7' = T(5),
the question is how T : [0, =) — (0, »] behaves
generally. (The minimum problem may have several
solutions, but for definiteness we then take 7" as the
largest of these.) For ¢ increasing, the integral
determining ¢ decreases as & increases, so T =
inf {T: ¢(T) > 0} cannot decrease:
Proposition 4. Assume ¢ increasing. Then 7T in-
creases with 8. Further, in the general case we have,
since lim; ... ¢(T) = —C, uniformly on {0 < T < K}
for every K > 0, lim;_,., T(3) = .

Generally, however, T' is not increasing. It may
jump downwards as well as upwards at discontinuity
points where the minimum problem has several
solutions. Roughly, this is the case: If at 6 = ¢,
we have two global minima 7, < T, , then the
more ¢ between 7', and T, is large close to 7', and
small elsewhere, the more likely 7' is to jump down-
wards from 7' to 7', at 8 = 3§, . This can be realized
from the following considerations. Assume ¢'(T';) >
0,7 = 1, 2. Write 7,(3) for the functions, continuous
and differentiable at 6, , giving local minimum points
(T': = Ty(5y)). Then

d d
% H(Tl(a)r 5)6:5: > % H(Tz(‘s): 6)5:5:

implies an upwards jump for 7 and vice versa.
Now (z = 1, 2)

©)  LHTW), 9, =

Lo (s,
= o'(T.(8))T."(8,)

ﬁmwmwwmw
AT

fom [H(x) — H(T)]A®) dx
A(T))

Now, in order to get a jump downwards, we would
like to have H as large as possible between 7' and
T,.Wehave, for T, < T' < T,,

HT)AT) = f o(@alz) dz + C, < f " @) de

+ C: = HTHAT,) = HT)A(T,),

or

HT)AT)
ATy

with equality if ¢(z) = 0for T < z < T, . It is
clear that making ¢ large in (T, , T, + ¢€) and close
to 0in (T, + ¢ T,), for a small positive ¢, makes
(d/d8)H (T»(5), 6)s-s, large. This is not transparent
for 7, since the denominator A(7T) in (10) depends
on r. In any case, see examples D and E. We have
exaggerated example D in order to make the point.
Example C exhibits an upward jump.

10)  H(T) < T,.<T<T,,

5. ExAMPLES

We present five numerically solved examples, in
each case holding F, ¢, C, and C, fixed. In 4, B
and C, T solves ¢(7) = 0, while in D and E ¢ has
discontinuities giving local minima.

For the special case exponential unit life distribu-
tion, F(z) = 1 — ¢, we can write H so that we
see that 7' is independent of C, and depends on A
and 6 only through \ + &:

an  HT) = (¢, — C

T
f g(x)e—(ua)z dx _+_ 02
o

—(A+8) T
1 —e

+ O+ 9

A. Exponential life distribution, linear maintenance
cost intensity.

F(x) =1—¢ ", g(x) = 10z, C, arbitrary, ', = 180
This gives

o(x) = (C; — 180)-0.1 + 10z;

10 10
V) =i+ T T 01+ o ¢

—(0.1+8) T

10
“ o1y 180

Here ¢ increases strictly to «, so there is exactly
one solution to ¢(T') = 0 (Case 1). This is Scheaffer’s
example 1 rescaled.

8 | 0 ]0.020.04 [0.06]0.08 |0.10
7 16.66 6.8 16.97 17.13 | 7.30 | 7.48

By (11), the solution 7.1 for & = 0.06 holds for
example also for A = 0.15, § = 0.01. If we take
go@) = x, C3 = 10 and put b = § + 0.1, then,
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using (7) and the relation ™ = 1 + 18® — b7,
we get

Al ~ 0:10AC; — 1.8bAC, + (36 + 1801 — T*)As
~ bl — 186°

For example when 6§ = 0.06

AT = 0.024AC, — 0.424AC, + 8.379As.

B. Rayleigh life distribution, linear maintenance cost
intensity.

F(z) = 1 — ¢ (7400=", g(z) = 10z,
C, = 300, C, = 180.

We have here changed the life distribution of 4 to
one with the same expectation 10 and a linear
failure rate.

e(x) = 0.1(100 + 6x)z;
¥(T) = 400(100 + 67)[0.005T + 57 ']
— 205 206
. q>(0.05 \Vor T —) - ep( ):|
l: T+ V 2m \V 2w
€077 4 200100 + 6m)rt
'e—(nAnnzsx'ruﬁ’r) — 20‘"_71(100 + 151'_).

Here ® is the N(0; 1) distribution function. Also
here ¢(x) T « strictly, and ¢(7) = 0 has a unique
solution.

5] 0 002 [0.04]0.06 | 0.08 [0.10
71562 1572 15831595607 620

C. Exponential life distribution, oscillating mainte-
nance cost intensity.

F) =1 — "%, gx) =
arbitrary, C, = 45.

o(r) = (C; — 45)-0.1 + wx + cos (27z) — o,
soT < =,

With b = 6 + 0.1 we have
V(@) = xb7'T + b~ cos (22T) + xb %"
— (b® + 4x%) e "[2r sin (2« T) + 4x°b"" cos (22T)]
— b(d® + 47°)™' — 7b™? — 45.
3] 0 ]0.02]0.04[0.06]0.07]0.08] 0.10
T l 5.79| 5.83| 5.88| 5.94 I 6.58| 6.61| 6.66
With

7z + cos (2mx), C,

= (- T L)
E,L—(n 12,n+12 ,

we have T ¢ \U,_," E, , the set of increase for g
(Proposition 3). Now T ¢ E;, for 5 = 0.06, but
T e E, for 6 = 0.07, so that 7 has an upward
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jump in (0.06, 0.07) as a function of 8. For § = 0.06
we have two local minima, the first of which is
global, while for 5 = 0.07 we have two local minima,
the second of which is global. This example illu-
strates the discussion concluding sec. 4, as do the
following ones.

D. The failure rate a simple function, no maintenance
cost.

0, 0<z<1
Fla) = 1 — 1% 1<z<1.01
1—e, 10l <2 <37

1 — 07101+369J 37 <

glx) = 0, C, = 11, C, = 1. This is an example
of the original model of Barlow & Proschan, Denardo
& Fox, since g(x) = 0. The failure rate is the simple
function

() = 100x1,1.01(2) + 10x7,w, ().

Here x4(x) is defined as 1 for z in A and O for z
not in A. We have local minima in 1 and 37.

[
H(l) = -
M 1 —e?
HGT) =
e
- 1000 T 100 +1 .
- 1 —e? % — gm1-01-1 g~ 10181 e 3781
) + 4 + 100 + 8

Comparing H(1) and H(37) we get 7.
50 ]0.0210.04]0.06|0.08 {0.10

T37|37|37‘1)1|1

E. Exponential life distribution, g simple.

F@)=1—¢"% g = 5xa.1.5@ + 2x@« (@),
C, arbitrary, C, = 1.
Local minima in 1 and 4. With b = 0.2 + § we have

HQ) = (€ — 1):02 + —2— |
1 —e
H@) = (C; — 1)-02 + iie_l—_e_eb)ﬁ’

8 0]0.02]0.04 |0.06 [0.08 |0.10

T|4|4|4|4‘1|1

It is easy to see that the condition of Proposition
2 is satisfied for the s-values tabulated in examples
D and E with T, equal to 37 and 4, respectively.
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